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LETTER TO THE EDITOR 

Percolative phase transition without the appearance of an 
infinite network 

Francois Delyont, Bernard Souillardt and Dietrich Stauffer$ll 
t Centre de Physique TheoriqueO, Ecole Polytechnique, 91128 Palaiseau, France 
$ DBpartement de Physique des SystBmes DCsordonnBs, Universite de Provence, Centre 
St-Jtrome, 13397 Mareeiile Cedex 13, France. 

Received 13 April 1981 

Abstract. We study the probability P,, for the origin to belong to a cluster of n sites in a 
correlated site-bond percolation problem, the Coniglio-Stanley-Klein model. In some 
region of the phase diagram we obtain rigorously a percolative phase transition in the 
asymptotic behaviour of P,,, but without divergence of the mean cluster size and without the 
appearance of an infinite network. 

In this Letter we study a correlated site-bond percolation problem. Consider plus and 
minus spins distributed according to an Ising model in thermal equilibrium; an 
additional randomness now is introduced by assuming that connecting bonds will be 
active with probability pB, independently of each other, and passive with probability 
1 -pB. Clusters are then the maximal sets of plus spins connected through active bonds. 
(For the Hamiltonian and the magnetic properties, both the passive and the active 
bonds are taken into account; only for the definition of clusters do we distinguish 
between the two types of bonds.) This model was introduced by Coniglio et a1 (1979) in 
connection with polymer gelation; we regard the probability pB to establish a chemical 
bond (i.e. to activate it) as an independent parameter, in addition to temperature and 
magnetic field. For simplicity we always assume a nearest-neighbour Ising model in zero 
magnetic field, and for temperatures below the critical temperature T, we will consider 
only the two pure positive and negative phases. Some numerical results were given by 
Stauffer (1981)s. 

In this correlated site-bond percolation model the probability for the origin to 
belong to a cluster of exactly n plus spins is called P,, and the probability for the origin to 
belong to an infinite cluster is called P,. Both depend on pB, the temperature T and, for 
T < T,, also on the phase of the system. 

A particular case of this model, where 

ln(1- pB) = (exchange energy)/(thermal energy) 

was studied recently for another purpose by Coniglio and Klein (1980) and is currently 
simulated by Monte Carlo methods (Roussenq 1981, Ottavi 1981, Stauffer 1981). 

O Groupe de Recherche du CNRS No. 48. 
I/ Present and permanent address: Institut fur Theoretische Physik, Universitat, Ziilpicherstr. 77, 5000 Koln 
41, West Germany. 
7 Note that in figure 3 there T/ T, should be replaced be TJ T. 

0305-4470/81/070243 + 04$01.50 @ 1981 The Institute of Physics L243 



L244 Letter to the Editor 

According to Coniglio and Klein it is those clusters with this particular choice of pB, and 
not the usually studied clusters of the Ising model ( p ~  = l ) ,  which are determined by the 
phase transition behaviour and which are relevant e.g. for nucleation theory. 

For the asymptotic behaviour in usual percolation models of the cluster size 
distribution P,, (pB), Kunz and Souillard (1978) proved that this quantity undergoes a 
percolative phase transition from an exponential decay at low concentrations (In P,, a 
n )  to a decay with a surface exponent at high concentrations (lnP,anl-l’d in d 
dimensions). We refer to them (Aizenman et a1 1980 or Stauffer 1979) for a discussion 
of motivations and more results. Aizenman et a1 (1980) showed for usual percolation 
and for Ising models with rather general interactions in d 5 2 dimensions that 

(1) 

as soon as P,>O. Numerical evidence (Stauffer 1979) suggests that this inequality 
actually is an equality, as far as the leading behaviour of the argument of the exponential 
is concerned. 

Now we want to know if the surface exponent 1 - l / d  of equation (1) is also valid 
when percolation occurs in the more general correlated site-bond percolation model 
discussed above. Our answer to this question is yes, but as we shall see below, as a result 
the asymptotic decay of the cluster size distribution presents in some regions of the 
phase diagram, a strange and new characteristic. First we present the following rigorous 
results, where a, a’ and a’’ are factors independent of n :  

P, 2 exp(-constant x nl-’ld) 

Theorem 1. 

P,, < exp(-a). 
(i) If p B < & ,  with some fixed positive E independent of T and of the phase, then 

(ii) If P, > 0 then P,, > exp(-a’n 
(iii) If P,> 0, for T <  T, and some pB in the positive pure phase, then also 

l - l / d  
). 

l - l / d  P, > exp(-a”n 

(Parts (i) and (ii) are also valid in an arbitrary magnetic field.) 

) for the negative pure phase. 

The proof of this theorem is an easy extension of the one by Aizenman et a1 (1980) 
and hence will not be given here. If we combine these results with a study of the phase 
diagram (Stauffer 1981) of this model and with some other results, we will get new 
behaviour as promised. Figure 1 shows this phase diagram in three dimensions for 
temperatures below T, to which we are now restricting ourselves. We then can describe 
our system by the two variables pB and M = 2 x  - 1, where M is the magnetisation and x 
the concentration of up spins. The boundaries M = *1 correspond to the plus and 
minus phases at zero temperature, with all spins down for M = -1 (no clusters of up 
spins) and all spins up for M = +I (pure bond percolation at pB). The centre line M = 0 
corresponds to T = T,. Along the upper line, pB = 1, we get the usual clusters of up 
spins in the plus or minus phase of the Ising model. 

In the shadowed region an infinite cluster exists (see Stauffer 1981 for three and 
Ottavi 1981 for two dimensions). In fact one can prove rigorously that for M near +1 
and for M near -1 the phase diagram is of the type described in our figure. The broken 
curve is the mirror image in the left part ( M  < 0) of the solid border line of the region 
where an infinite network occurs (shaded region in right part, M > 0). Thus any phase 
above the broken curve at M<O can coexist with a phase at the right-hand side 
(positive M )  where P, > 0. Hence according to theorem 1 we found a whole region ( M  
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Figure 1. Schematic phase diagram for three dimensions. The broken curve is the mirror 
image of the border line of the shadowed region. An infinite network is present in the 
shadowed region. The broken curve presumably is the locus of a phase transition in the 
asymptotic cluster numbers without the appearance of an infinite network and without 
divergence of any moment of the cluster size distribution. The dotted line corresponds to 
T = T,. 

negative, all pB above the broken curve until the shadowed region or unity) in which 
P,, > exp(-anl-'Id) although P, = 0, 'surface' decay of P,, without the presence of an 
infinite network. On the other hand P,, decays as exp(-an) for small pB (theorem l), 
and one expects from renormalisation group arguments, similar to those of Klein and 
Stauffer (1980) that this simple exponential decay extends from pB = 0 up to the broken 
curve. At this broken curve, therefore, the asymptotic decay of the cluster numbers 
changes from In P,, cc -n below to In F,, cc -nl-'ld above the broken curve, for n + 00, 

without the appearance of an infinite cluster, if these expectations are correct. We 
cannot yet exclude rigorously that this border, for the simple exponential decay 
In P,, cc -n, occurs at a pB somewhere below the broken curve. 

Wherever this transition in the asymptotic decay of cluster numbers is, we now ask if 
it is also characterised by a divergence of the first or any higher moment of the cluster 
size distribution P,,, as happens in usual percolation (Stauffer 1979). Our answer is no, 
at least for magnetisations close to - 1. More precisely, we can prove an upper bound of 
the cluster size distribution in the minus phase at very low temperatures, using an 
analogous result derived by Delyon (1979) for the Ising model: 

Theorem 2. 
There is some &'such  that if - ~ S M S - ~ + E '  then Pfl<exp(-a"nl-l'd) for all pB 
between zero and unity. 

This inequality prevents any moments from diverging. 

Hence we have proved for very small concentrations of up spins that the transition in 
the asymptotic behaviour of P,, is not accompanied by an order parameter (infinite 
network), a divergence of the susceptibility (first moment of P,,) or any divergence in 
any of the higher moments of P,,. This description presumably applies to the whole 
region in figure 1 with negative magnetisation below the shadowed region, and 
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probably the predicted phase transition happens exactly on the broken curve, i.e. on the 
mirror curve of the ‘normal’ phase transition curve with the formation of an infinite 
cluster. Apreliminary analysis by Roussenq (1981) in 16 X 16 X 16 Monte Carlo studies 
of the simple cubic lattice is compatible with some of our predictions. 

To conclude, we mention that theorem 1 can be extended to many different 
situations, using mainly the proof of Aizenman et al (1980). In particular it holds for 
any equilibrium states constructed from a potential CP with many-body forces and 
satisfying Xc*30 diam(x)l@(x)] <a, where diam(x) is the diameter of the set x of 
interacting particles. It holds also for a large class of systems with random interactions, 
and also for continuous models such as the Widom-Rowlinson models. Since such 
varied potentials lead to very different phase diagrams, one may expect from the above 
ideas a lot of different phase diagrams with percolative phase transitions with and 
without the formation of infinite clusters. 

We thank the Ecole Superieure de Physique et de Chimie Industrielles de Paris, where 
the present work was initiated, for its hospitality extended to DS. We also thank J 
Roussenq for timely information on his ongoing Monte Carlo analysis. 
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